Tuesday, March 03, 2009

Adding Some Herbs to Open Databases

"Harnessing the Crowd to Make Better Drugs: Merck’s Friend Nails Down $5M to Propel New Open Source Era"

Friend, 54, is leaving his high-profile job as Merck’s senior vice president of cancer research, after having nailed down $5 million in anonymous donations to pursue this vision at a nonprofit organization getting started in Seattle called Sage.

Sage is built on the premise that vast networks of genes get perturbed, or thrown off-kilter, in complex diseases like cancer, diabetes, and obesity. Scientists can’t just pick one faulty gene or protein and make a magic bullet to shut it down. But what if researchers around the world capturing genomic profiles on patients could get all of their data to talk to each other through a free, open database? A researcher in Seattle looking at how all 35,000 genes in breast cancer patients are dialed on or off at a certain stage of illness might be able to make critical comparisons by stacking results up against a deeper and broader data pool that integrates clinical, genetic, and other molecular data from peers in, say, San Francisco, New Haven, CT, or anywhere else.

Some big names have signed on for the early incubating phase. Besides the full-time efforts of Friend and Schadt, the Sage board includes Nobel Laureate Lee Hartwell of the Fred Hutchinson Cancer Research Center; Paul Ramsey dean of the School of Medicine at the University of Washington; Richard Lifton, the chairman of genetics at Yale University; and Hans Wigzell, director emeritus of Sweden’s Karolinska Institute. For insight into how to apply lessons from the open-source computing world, the board has brought on John Wilbanks, the vice president of science at the San Francisco-based Creative Commons.

As with any far-out vision, plenty of things can derail it along the way. What if researchers use different gene analysis machines, from Affymetrix, Illumina, or Applied Biosystems? How will Sage reconcile differences in how experiments are designed by different scientists? How will researchers be enticed to let go of their precious data, currently stored on password-protected hard drives and servers? How will Sage manage the intellectual property that arises from the database? Why would companies want to participate and run the risk of putting valuable proprietary data out in public? How will this get financed?

Some of these things Friend can answer, and some still need to be worked out. Software is already making it possible to manage differences between the various instruments scientists use, and deal with the differences in experimental design, Friend says.
Post a Comment